Book Image

Distributed Computing with Python

Book Image

Distributed Computing with Python

Overview of this book

CPU-intensive data processing tasks have become crucial considering the complexity of the various big data applications that are used today. Reducing the CPU utilization per process is very important to improve the overall speed of applications. This book will teach you how to perform parallel execution of computations by distributing them across multiple processors in a single machine, thus improving the overall performance of a big data processing task. We will cover synchronous and asynchronous models, shared memory and file systems, communication between various processes, synchronization, and more.
Table of Contents (15 chapters)
Distributed Computing with Python
Credits
About the Author
About the Reviewer
www.PacktPub.com
Preface
Index

Closing thoughts


One of the main difficulties in developing parallel applications is getting data access right and avoiding race conditions or situations that would corrupt shared data. Sometimes, these situations are easy to spot as they lead to spectacular crashes. Other times, more worryingly, they are not—the application keeps plodding along, producing incorrect results.

It is always important to have good tests for our applications and their internal functions. It is even more so for parallel applications, where building a clear mental picture of what happens where and when can be particularly challenging.

Another difficulty in parallelizing algorithms is to know when to stop. Amdahl's law tells us very clearly that parallelization is, from a given point forward, a game of diminishing returns. Experience tells us that parallelization efforts can easily become a time sink. It is important to have clarity in our minds as to which parts of the code need to be parallelized (if any) and what...