Book Image

MCSA Windows Server 2016 Certification Guide: Exam 70-741

By : Sasha Kranjac, Vladimir Stefanovic
Book Image

MCSA Windows Server 2016 Certification Guide: Exam 70-741

By: Sasha Kranjac, Vladimir Stefanovic

Overview of this book

MCSA: Windows Server 2016 is one of the most sought-after certifications for IT professionals which include working with Windows Server and performing administrative tasks around it. It targets Exam 70-740, Exam 70-741, Exam 70-742 and Exam 70-743 certifications and the demand for these certifications is increasingly high. This book will start with installation, upgrade and migration to Windows Server 2016, cover imaging and deployment and proceed with High Availability and Clustering. Then we will deep dive into fundamental concepts like Core networking, DNS, DHCP, Storage and proceed to Hyper-V, Network Access and Distributed File System. It will also explain Advanced Networking topics such as Software Defined Networking and High-Performance Networking. Furthermore, it will also cover advanced Identity topics in Windows Server 2016 such as Active Directory installation and configuration, Group Policy, Active Directory Certificate Services, and Active Directory Federation Services and Rights Management. Towards the end of this book, test questions and mock preparation items will help in preparing for the certifications with more ease. By the end of this book, you will be able to complete MCSA: Windows Server 2016 certification with more confidence.
Table of Contents (9 chapters)

Understanding CIDR

Network classes were designed with then-current situations in mind, where class A was designed to have the smallest number of networks but the largest number of hosts per network, and class C was designed to have the largest number of networks but the smallest number of hosts per network. The class A networks were distributed among the largest corporations that were supposed to have the largest number of hosts, and the class C networks were supposed to be distributed to the various companies that were smaller in size.

In classless addressing, the addresses no longer belong to class A, B, or C – as the name implies – but the suffix to the address is added. This defines how many high-order bits of the address belong to the network ID and how many belong to the host ID; this is also called CIDR.

For example, a address is a class C address. However, in a CIDR notation, this address is noted as if a default, class-specific subnet mask is used. In this case, /24 means that the 24 high-order bits are used for the network ID portion and the remaining 8 bits are used for the host ID portion:

The Internet Assigned Numbers Authority (IANA) is the authoritative body that assigns or issues the blocks of CIDR addresses to regional internet registries. For example, the body is responsible for addressing assignments to European, Asian, or North American internet registries, which then further assign the blocks of addresses to local internet registrars. By using classless addressing, finer and adjustable segmentation of the address space is possible, resulting in fewer addresses being wasted.

In a usual network addressing scheme, the number of addresses available for assignment to hosts is n-2, where n is the maximum number of available network IDs in a network. For example, there are 256 host IDs in a class C network. The number of addresses that can be assigned to hosts is 256 - 2 = 254. The first host address (, in this example) is always reserved for referring to the network itself and the last network ID (, in this example) is always reserved to a broadcast address.

In more complex network environments, less common addressing schemes are possible, such as networks with a /31 and /32 suffix. These are one-host networks, where the host ID is equal to the broadcast address. However, these are beyond the scope of this book and won't be mentioned further.

The following table shows the values of IPv4 CIDR block prefixes, available addresses, and subnet masks:

In the next section, we will learn how to divide a network range into smaller, multiple networks.