Book Image

Linux Kernel Programming

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.
Table of Contents (19 chapters)
1
Section 1: The Basics
6
Writing Your First Kernel Module - LKMs Part 2
7
Section 2: Understanding and Working with the Kernel
10
Kernel Memory Allocation for Module Authors - Part 1
11
Kernel Memory Allocation for Module Authors - Part 2
14
Section 3: Delving Deeper
17
About Packt

Graphing it

As an interesting aside, we use the well-known gnuplot(1) utility to plot a graph from the previously gathered data. Actually, we have to minimally modify the kernel module to only output what we'd like to graph: the required (or requested) amount of memory to allocate (x axis), and the percentage of waste that actually occurred at runtime (y axis). You can find the code of our slightly modified kernel module in the book's GitHub repository here: ch8/slab4_actualsz_wstg_plot (https://github.com/PacktPublishing/Linux-Kernel-Programming/tree/master/ch8/slab4_actualsize).

So, we build and insert this kernel module, "massage" the kernel log, saving the data in an appropriate column-wise format as required by gnuplot (in a file called 2plotdata.txt). While we do not intend to delve into the intricacies of using gnuplot(1) here (refer to the Further reading section for a tutorial link), in the following code snippet, we show the essential commands to generate...