Book Image

Linux Kernel Programming

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.
Table of Contents (19 chapters)
1
Section 1: The Basics
6
Writing Your First Kernel Module - LKMs Part 2
7
Section 2: Understanding and Working with the Kernel
10
Kernel Memory Allocation for Module Authors - Part 1
11
Kernel Memory Allocation for Module Authors - Part 2
14
Section 3: Delving Deeper
17
About Packt

Using the atomic_t and refcount_t interfaces

In our simple demo misc character device driver program's (miscdrv_rdwr/miscdrv_rdwr.c) open method (and elsewhere), we defined and manipulated two static global integers, ga and gb:

static int ga, gb = 1;
[...]
ga++; gb--;

By now, it should be obvious to you that this – the place where we operate on these integers – is a potential bug if left as is: it's shared writable data (in a shared state) and therefore a critical section, thus requiring protection against concurrent access. You get it; so, we progressively improved upon this. In the previous chapter, understanding the issue, in our ch12/1_miscdrv_rdwr_mutexlock/1_miscdrv_rdwr_mutexlock.c program, we first used a mutex lock to protect the critical section. Later, you learned that using a spinlock to protect non-blocking critical sections such as this one would be (far) superior to using a mutex in terms of performance; so, in our next driver,...