Book Image

Linux Kernel Programming

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.
Table of Contents (19 chapters)
1
Section 1: The Basics
6
Writing Your First Kernel Module - LKMs Part 2
7
Section 2: Understanding and Working with the Kernel
10
Kernel Memory Allocation for Module Authors - Part 1
11
Kernel Memory Allocation for Module Authors - Part 2
14
Section 3: Delving Deeper
17
About Packt

The simpler atomic_t and refcount_t interfaces

Regarding the atomic_t interfaces, we should mention that all the following atomic_t constructs are for 32-bit integers only; of course, with 64-bit integers now being commonplace, 64-bit atomic integer operators are available as well. Typically, they are semantically identical to their 32-bit counterparts with the difference being in the name (atomic_foo() becomes atomic64_foo()). So the primary data type for 64-bit atomic integers is called atomic64_t (AKA atomic_long_t). The refcount_t interfaces, on the other hand, cater to both 32 and 64-bit integers.

The following table shows how to declare and initialize an atomic_t and refcount_t variable, side by side so that you can compare and contrast them:

(Older) atomic_t (32-bit only) (Newer) refcount_t (both 32- and 64-bit)

Header file to include

<linux/atomic.h>

<linux/refcount.h>

Declare and initialize a variable static atomic_t gb...