Book Image

Linux Kernel Programming

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.
Table of Contents (19 chapters)
1
Section 1: The Basics
6
Writing Your First Kernel Module - LKMs Part 2
7
Section 2: Understanding and Working with the Kernel
10
Kernel Memory Allocation for Module Authors - Part 1
11
Kernel Memory Allocation for Module Authors - Part 2
14
Section 3: Delving Deeper
17
About Packt

Example 2 – catching an AB-BA deadlock with lockdep

As one more example, let's check out a (demo) kernel module that quite deliberately creates a circular dependency, which will ultimately result in a deadlock. The code is here: ch13/3_lockdep/deadlock_eg_AB-BA. We've based this module on our earlier one (ch13/2_percpu); as you'll recall, we create two kernel threads and ensure (by using a hacked sched_setaffinity()) that each kernel thread runs on a unique CPU core (the first kernel thread on CPU core 0 and the second on core 1).

This way, we have concurrency. Now, within the threads, we have them work with two spinlocks, lockA and lockB. Understanding that we have a process context with two or more locks, we document and follow a lock ordering rule: first take lockA, then lockB. Great; so, one way it should not be done is like this:

kthread 0 on CPU #0                kthread 1 on CPU #1
Take lockA ...