Book Image

Linux Kernel Programming

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.
Table of Contents (19 chapters)
1
Section 1: The Basics
6
Writing Your First Kernel Module - LKMs Part 2
7
Section 2: Understanding and Working with the Kernel
10
Kernel Memory Allocation for Module Authors - Part 1
11
Kernel Memory Allocation for Module Authors - Part 2
14
Section 3: Delving Deeper
17
About Packt

Module auto-loading – additional details

Once a kernel module has been installed on a system (via sudo make install, as shown previously), you can also insert it into the kernel interactively (or via a script) simply by using a "smarter" version of the insmod(8) utility, called modprobe(8). For our example, we could first rmmod(8) the module and then do the following:

sudo modprobe min_sysinfo

As an interesting aside, consider the following. In cases where there are several kernel module objects to load (for example, the module stacking design), how does modprobe know the order in which to load up kernel modules? When performing a build locally, the build process generates a file called modules.order. It tells utilities such as modprobe the order in which to load up kernel modules such that all dependencies are resolved. When kernel modules are installed into the kernel (that is, into the /lib/modules/$(uname -r)/extra/, or similar, location...