Book Image

Linux Kernel Programming

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.
Table of Contents (19 chapters)
1
Section 1: The Basics
6
Writing Your First Kernel Module - LKMs Part 2
7
Section 2: Understanding and Working with the Kernel
10
Kernel Memory Allocation for Module Authors - Part 1
11
Kernel Memory Allocation for Module Authors - Part 2
14
Section 3: Delving Deeper
17
About Packt

Summary

In this chapter, we delved – in quite some depth – into the big topic of kernel memory management in a level of detail sufficient for a kernel module or device driver author like you; also, there's more to come! A key piece of the puzzle – the VM split and how it's achieved on various architectures running the Linux OS – served as a starting point. We then moved into a deep examination of both regions of this split: first, user space (the process VAS) and then the kernel VAS (or kernel segment). Here, we covered many details and tools/utilities on how to examine it (notably, via the quite powerful procmap utility). We built a demo kernel module that can literally generate a pretty complete memory map of the kernel and the calling process. User and kernel memory layout randomization technology ([K]ASLR) was also briefly discussed. We closed the chapter by taking a look at the physical organization of RAM within Linux.

All of this information...