Book Image

Implementing and Administering Cisco Solutions: 200-301 CCNA Exam Guide

By : Glen D. Singh
Book Image

Implementing and Administering Cisco Solutions: 200-301 CCNA Exam Guide

By: Glen D. Singh

Overview of this book

In the dynamic technology landscape, staying on top of the latest technology trends is a must, especially if you want to build a career in network administration. Achieving CCNA 200-301 certification will validate your knowledge of networking concepts, and this book will help you to do just that. This exam guide focuses on the fundamentals to help you gain a high-level understanding of networking, security, IP connectivity, IP services, programmability, and automation. Starting with the functions of various networking components, you’ll discover how they are used to build and improve an enterprise network. You’ll then delve into configuring networking devices using a command-line interface (CLI) to provide network access, services, security, connectivity, and management. The book covers important aspects of network engineering using a variety of hands-on labs and real-world scenarios that will help you gain essential practical skills. As you make progress, this CCNA certification study guide will help you get to grips with the solutions and technologies that you need to implement and administer a broad range of modern networks and IT infrastructures. By the end of this book, you’ll have gained the confidence to pass the Cisco CCNA 200-301 exam on the first attempt and be well-versed in a variety of network administration and security engineering solutions.
Table of Contents (26 chapters)
1
Section 1: Network Fundamentals
6
Section 2: Network Access
9
Section 3: IP Connectivity
12
Section 4: IP Services
15
Section 5: Security Fundamentals
20
Section 6: Automation and Programmability
22
Chapter 16: Mock Exam 1
23
Chapter 17: Mock Exam 2

Understanding network sizes – SOHO, LAN, and WAN

Let's imagine we have a few devices that are all interconnected in a single network, sharing files between themselves without having the user (human) physically walk around with a portable storage device such as a flash drive to copy and paste files. Users access a centralized file server within the company's network from their local computer.

The following diagram shows a small network with both a network-shared printer and file server:

Figure 1.1 – Devices interconnected to create a small LAN

Figure 1.1 – Devices interconnected to create a small LAN

This type of network is commonly referred to as a LAN. A LAN is defined as a small computer network that does not exceed the physical space of a home or a single building. To help you understand this, we're going to use a simple analogy. Let's imagine you work for ACME, a fictional-based organization that has a single branch. Within the branch (that is, the physical building), ACME has a LAN that is used to interconnect all their devices – computers, servers, printers, and so on. This LAN allows employees to sit at their workstations and send documents to print via the network to the local printer and access the file server to store and copy files for their projects. Let's call this office location HQ.

The following diagram shows a typical LAN with interconnected devices within the HQ building:

Figure 1.2 – A building containing a LAN

Figure 1.2 – A building containing a LAN

One day, ACME wants to open a new branch in another city to provide services to new and potential customers; however, there is a challenge. We shall refer to the new branch as BranchA. The new location, BranchA, is many miles away and the staff at BranchA need to access resources such as the application server, Customer Relationship Management (CRM) database, and other important resources that are located at the HQ location. One solution would be to create a clone of the servers from HQ to the new location, BranchA; however, this means each time new records and data is updated at the HQ location, it will take a long time to replicate the data on the servers at BranchA. This may create inconsistency issues when employees try to access the most up-to-date files and records at BranchA.

Important note

In our scenario, BranchA is typically known as a Small Office/Home Office (SOHO). This type of network is generally smaller than the main corporate office of a company, but it enables the users to connect or access the resources that are centrally shared on the corporate network (HQ).

A better approach is to create a WAN. A WAN is used to simply extend a LAN over a large geographic distance. A company such as ACME would definitely benefit from using this technology within their organization. By implementing a WAN between their branches, HQ and BranchA, the servers and main resources can simply stay at HQ while employees are still able to access the resources, files, and records across the network at their BranchA location.

The following diagram shows a depiction of a WAN connection between the HQ location and the new branch office:

Figure 1.3 – A WAN connection between two buildings

Figure 1.3 – A WAN connection between two buildings

In modern times, WANs are managed by service providers (SP) and Internet Service Providers (ISPs). WANs can extend your LAN beyond cities, countries, and even continents. ISPs offer a range of WAN services to their customers, such as the following:

  • Metro Ethernet (MetroE)
  • Virtual Private LAN Service (VPLS)
  • Multiprotocol Label Switching (MPLS)

As a simple example, MetroE enables customers of a service provider to establish a WAN between branches, functioning like a very huge LAN within the service provider network. This means a company can interconnect multiple branches using a MetroE service within the service provider network. On the customer's end, the network functions as if it were on a large LAN.

Another type of WAN service is MPLS, which provides us with the functionality to extend an organization's network beyond the local service provider's network. Imagine having a WAN circuit starting from the HQ location and passing through multiple ISP networks until the connection is terminated at a remote branch in another country.

With that, we have covered the fundamentals of SOHOs, LANs, and WANs. In the next section, we will learn about the components that help us build and extend networks.