Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization is an ideal companion guide to the Linux Kernel Programming book. This book provides a comprehensive introduction for those new to Linux device driver development and will have you up and running with writing misc class character device driver code (on the 5.4 LTS Linux kernel) in next to no time. You'll begin by learning how to write a simple and complete misc class character driver before interfacing your driver with user-mode processes via procfs, sysfs, debugfs, netlink sockets, and ioctl. You'll then find out how to work with hardware I/O memory. The book covers working with hardware interrupts in depth and helps you understand interrupt request (IRQ) allocation, threaded IRQ handlers, tasklets, and softirqs. You'll also explore the practical usage of useful kernel mechanisms, setting up delays, timers, kernel threads, and workqueues. Finally, you'll discover how to deal with the complexity of kernel synchronization with locking technologies (mutexes, spinlocks, and atomic/refcount operators), including more advanced topics such as cache effects, a primer on lock-free techniques, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this Linux kernel book, you'll have learned the fundamentals of writing Linux character device driver code for real-world projects and products.
Table of Contents (11 chapters)
1
Section 1: Character Device Driver Basics
3
User-Kernel Communication Pathways
5
Handling Hardware Interrupts
6
Working with Kernel Timers, Threads, and Workqueues
7
Section 2: Delving Deeper

Writing the kernel-space netlink socket code as a kernel module

The kernel provides the base infrastructure for netlink, including APIs and data structures; all the required ones are exported and thus available to you as a module author. We use several of them; the steps to program our kernel netlink component our kernel module – are outlined here:

  1. Just as with the user space app, the first thing we must do is get ourselves a netlink socket. The kernel API is netlink_kernel_create(), and its signature is as follows:
struct sock * netlink_kernel_create(struct net *, int , struct netlink_kernel_cfg *);

The first parameter is a generic network structure; we pass the kernel's existing and valid init_net structure here. The second parameter is the protocol number (unit) to use; we shall specify the same number (31) as we did for the user space app. The third parameter is a pointer to an (optional) netlink configuration structure; here, we only set the...