Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization is an ideal companion guide to the Linux Kernel Programming book. This book provides a comprehensive introduction for those new to Linux device driver development and will have you up and running with writing misc class character device driver code (on the 5.4 LTS Linux kernel) in next to no time. You'll begin by learning how to write a simple and complete misc class character driver before interfacing your driver with user-mode processes via procfs, sysfs, debugfs, netlink sockets, and ioctl. You'll then find out how to work with hardware I/O memory. The book covers working with hardware interrupts in depth and helps you understand interrupt request (IRQ) allocation, threaded IRQ handlers, tasklets, and softirqs. You'll also explore the practical usage of useful kernel mechanisms, setting up delays, timers, kernel threads, and workqueues. Finally, you'll discover how to deal with the complexity of kernel synchronization with locking technologies (mutexes, spinlocks, and atomic/refcount operators), including more advanced topics such as cache effects, a primer on lock-free techniques, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this Linux kernel book, you'll have learned the fundamentals of writing Linux character device driver code for real-world projects and products.
Table of Contents (11 chapters)
1
Section 1: Character Device Driver Basics
3
User-Kernel Communication Pathways
5
Handling Hardware Interrupts
6
Working with Kernel Timers, Threads, and Workqueues
7
Section 2: Delving Deeper

Understanding how to use the *delay() atomic APIs

Without further ado, let's take a look at a table that quickly summarizes the available (to us module authors) non-blocking or atomic *delay() kernel APIs; they're meant to be used in any kind of atomic or interrupt context where you cannot block or sleep (or invoke schedule()):

API Comment
ndelay(ns); Delay for ns nanoseconds.
udelay(us); Delay for us microseconds.
mdelay(ms); Delay for ms milliseconds.
Table 5.1 – The *delay() non-blocking APIs

There are a few points to note regarding these APIs, their internal implementation, and their usage:

  • Always include the <linux/delay.h> header when using these macros/APIs.
  • You are expected to call an appropriate routine based on the time you must delay for; for example, if you need to perform an atomic non-blocking delay of, say, 30 milliseconds, you should call mdelay(30) and not udelay(30*1000). The kernel...