Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By : Kaiwan N Billimoria
Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By: Kaiwan N Billimoria

Overview of this book

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization is an ideal companion guide to the Linux Kernel Programming book. This book provides a comprehensive introduction for those new to Linux device driver development and will have you up and running with writing misc class character device driver code (on the 5.4 LTS Linux kernel) in next to no time. You'll begin by learning how to write a simple and complete misc class character driver before interfacing your driver with user-mode processes via procfs, sysfs, debugfs, netlink sockets, and ioctl. You'll then find out how to work with hardware I/O memory. The book covers working with hardware interrupts in depth and helps you understand interrupt request (IRQ) allocation, threaded IRQ handlers, tasklets, and softirqs. You'll also explore the practical usage of useful kernel mechanisms, setting up delays, timers, kernel threads, and workqueues. Finally, you'll discover how to deal with the complexity of kernel synchronization with locking technologies (mutexes, spinlocks, and atomic/refcount operators), including more advanced topics such as cache effects, a primer on lock-free techniques, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this Linux kernel book, you'll have learned the fundamentals of writing Linux character device driver code for real-world projects and products.
Table of Contents (11 chapters)
Section 1: Character Device Driver Basics
User-Kernel Communication Pathways
Handling Hardware Interrupts
Working with Kernel Timers, Threads, and Workqueues
Section 2: Delving Deeper

Multicore SMP systems and data races

The first point is pretty obvious; take a look at the pseudocode shown in the following screenshot:

Figure 6.5 – Pseudocode  a critical section within a (fictional) driver's read method; it's wrong as there's no locking

It's a similar situation to what we showed in Figures 6.1 and 6.3; it's just that here, we're showing the concurrency in terms of pseudocode. Clearly, from time t2 to time t3, the driver is working on some global shared writeable data, thus making this a critical section.

Now, visualize a system with, say, four CPU cores (an SMP system); two user space processes, P1 (running on, say, CPU 0) and P2 (running on, say, CPU 2), can concurrently open the device file and simultaneously issue a read(2) system call. Now, both processes will be concurrently executing the driver read "method", thus simultaneously working on shared writeable data! This...