Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization is an ideal companion guide to the Linux Kernel Programming book. This book provides a comprehensive introduction for those new to Linux device driver development and will have you up and running with writing misc class character device driver code (on the 5.4 LTS Linux kernel) in next to no time. You'll begin by learning how to write a simple and complete misc class character driver before interfacing your driver with user-mode processes via procfs, sysfs, debugfs, netlink sockets, and ioctl. You'll then find out how to work with hardware I/O memory. The book covers working with hardware interrupts in depth and helps you understand interrupt request (IRQ) allocation, threaded IRQ handlers, tasklets, and softirqs. You'll also explore the practical usage of useful kernel mechanisms, setting up delays, timers, kernel threads, and workqueues. Finally, you'll discover how to deal with the complexity of kernel synchronization with locking technologies (mutexes, spinlocks, and atomic/refcount operators), including more advanced topics such as cache effects, a primer on lock-free techniques, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this Linux kernel book, you'll have learned the fundamentals of writing Linux character device driver code for real-world projects and products.
Table of Contents (11 chapters)
1
Section 1: Character Device Driver Basics
3
User-Kernel Communication Pathways
5
Handling Hardware Interrupts
6
Working with Kernel Timers, Threads, and Workqueues
7
Section 2: Delving Deeper

Preemptible kernels, blocking I/O, and data races

Imagine you're running your kernel module or driver on a Linux kernel that's been configured to be preemptible (that is, CONFIG_PREEMPT is on; we covered this topic in the companion guide Linux Kernel Programming, Chapter 10The CPU Scheduler Part 1). Consider that a process, P1, is running the driver's read method code in the process context, working on the global array. Now, while it's within the critical section (between time t2 and t3), what if the kernel preempts process P1 and context switches to another process, P2, which is just waiting to execute this very code path? It's dangerous, and again, a data race. This could well happen on even a UP system!

Another scenario that's somewhat similar (and again, could occur on either a single core (UP) or multicore system): process P1 is running through the critical section of the driver method (between...