Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By : Kaiwan N Billimoria
Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By: Kaiwan N Billimoria

Overview of this book

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization is an ideal companion guide to the Linux Kernel Programming book. This book provides a comprehensive introduction for those new to Linux device driver development and will have you up and running with writing misc class character device driver code (on the 5.4 LTS Linux kernel) in next to no time. You'll begin by learning how to write a simple and complete misc class character driver before interfacing your driver with user-mode processes via procfs, sysfs, debugfs, netlink sockets, and ioctl. You'll then find out how to work with hardware I/O memory. The book covers working with hardware interrupts in depth and helps you understand interrupt request (IRQ) allocation, threaded IRQ handlers, tasklets, and softirqs. You'll also explore the practical usage of useful kernel mechanisms, setting up delays, timers, kernel threads, and workqueues. Finally, you'll discover how to deal with the complexity of kernel synchronization with locking technologies (mutexes, spinlocks, and atomic/refcount operators), including more advanced topics such as cache effects, a primer on lock-free techniques, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this Linux kernel book, you'll have learned the fundamentals of writing Linux character device driver code for real-world projects and products.
Table of Contents (11 chapters)
1
Section 1: Character Device Driver Basics
3
User-Kernel Communication Pathways
5
Handling Hardware Interrupts
6
Working with Kernel Timers, Threads, and Workqueues
7
Section 2: Delving Deeper

The lock validator lockdep – catching locking issues early

The Linux kernel has a tremendously useful feature begging to be taken advantage of by kernel developers: a runtime locking correctness or locking dependency validator; in short, lockdep. The basic idea is this: the lockdep runtime comes into play whenever any locking activity occurs within the kernel – the taking or the release of any kernel-level lock, or any locking sequence involving multiple locks.

This is tracked or mapped (see the following paragraph for more on the performance impact and how it's mitigated). By applying well-known rules for correct locking (you got a hint of this in the previous chapter in the Locking guidelines and deadlock section), lockdep then makes a conclusion regarding the validity of the correctness of what was done.

The beauty of it is that lockdep achieves 100% mathematical proof (or closure) that a lock sequence is correct or not. The...