Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization is an ideal companion guide to the Linux Kernel Programming book. This book provides a comprehensive introduction for those new to Linux device driver development and will have you up and running with writing misc class character device driver code (on the 5.4 LTS Linux kernel) in next to no time. You'll begin by learning how to write a simple and complete misc class character driver before interfacing your driver with user-mode processes via procfs, sysfs, debugfs, netlink sockets, and ioctl. You'll then find out how to work with hardware I/O memory. The book covers working with hardware interrupts in depth and helps you understand interrupt request (IRQ) allocation, threaded IRQ handlers, tasklets, and softirqs. You'll also explore the practical usage of useful kernel mechanisms, setting up delays, timers, kernel threads, and workqueues. Finally, you'll discover how to deal with the complexity of kernel synchronization with locking technologies (mutexes, spinlocks, and atomic/refcount operators), including more advanced topics such as cache effects, a primer on lock-free techniques, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this Linux kernel book, you'll have learned the fundamentals of writing Linux character device driver code for real-world projects and products.
Table of Contents (11 chapters)
1
Section 1: Character Device Driver Basics
3
User-Kernel Communication Pathways
5
Handling Hardware Interrupts
6
Working with Kernel Timers, Threads, and Workqueues
7
Section 2: Delving Deeper

lockdep issues

A couple of issues can arise when working with lockdep:

  • Repeated module loading and unloading can cause lockdep's internal lock class limit to be exceeded (the reason, as explained within the kernel documentation, is that loading a x.ko kernel module creates a new set of lock classes for all its locks, while unloading x.ko does not remove them; it's actually reused). In effect, either don't repeatedly load/unload modules or reset the system.
  • Especially in those cases where a data structure has an enormous number of locks (such as an array of structures), failing to properly initialize every single lock can result in lockdep lock-class overflow.

The debug_locks integer is set to 0 whenever lock debugging is disabled (even on a debug kernel); this can result in this message showing up: *WARNING* lock debugging disabled!! - possibly due to a lockdep warning. This could even happen due to lockdep issuing...