Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You’ll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take.
Table of Contents (21 chapters)
18
Other Books You May Enjoy
19
Index

Logic gates

Figure 2.3 is a schematic diagram of a transistor NOT gate. This circuit is powered by a 5 V supply. The input signal might come from a pushbutton circuit that produces 0 V when the button is not pressed and 5 V when it is pressed. R1 limits the current flowing from the input terminal to the transistor base terminal when the input is high (near 5 V). In a typical circuit, R1 has a value of about 1,000 ohms. R2 might have a value of 5,000 ohms. R2 limits the current flowing from the collector to the emitter when the transistor is switched on:

Figure 2.3: Transistor NOT gate

Figure 2.3: Transistor NOT gate

The input terminal accepts voltage inputs over the range 0 to 5 V, but since we are interested in digital circuit operation, we are only interested in signals that are either near 0 V (low) or near 5 V (high). We will assume that all voltage levels between the low and high states are transient during near-instantaneous transitions between the low and high states.

A typical NPN transistor...