Book Image

Mastering Kubernetes - Fourth Edition

By : Gigi Sayfan
3.3 (3)
Book Image

Mastering Kubernetes - Fourth Edition

3.3 (3)
By: Gigi Sayfan

Overview of this book

The fourth edition of the bestseller Mastering Kubernetes includes the most recent tools and code to enable you to learn the latest features of Kubernetes 1.25. This book contains a thorough exploration of complex concepts and best practices to help you master the skills of designing and deploying large-scale distributed systems on Kubernetes clusters. You’ll learn how to run complex stateless and stateful microservices on Kubernetes, including advanced features such as horizontal pod autoscaling, rolling updates, resource quotas, and persistent storage backends. In addition, you’ll understand how to utilize serverless computing and service meshes. Further, two new chapters have been added. “Governing Kubernetes” covers the problem of policy management, how admission control addresses it, and how policy engines provide a powerful governance solution. “Running Kubernetes in Production” shows you what it takes to run Kubernetes at scale across multiple cloud providers, multiple geographical regions, and multiple clusters, and it also explains how to handle topics such as upgrades, capacity planning, dealing with cloud provider limits/quotas, and cost management. By the end of this Kubernetes book, you’ll have a strong understanding of, and hands-on experience with, a wide range of Kubernetes capabilities.
Table of Contents (21 chapters)
19
Other Books You May Enjoy
20
Index

Choosing and managing the cluster capacity

With Kubernetes’ horizontal pod autoscaling, DaemonSets, StatefulSets, and quotas, we can scale and control our pods, storage, and other objects. However, in the end, we’re limited by the physical (virtual) resources available to our Kubernetes cluster. If all your nodes are running at 100% capacity, you need to add more nodes to your cluster. There is no way around it. Kubernetes will just fail to scale. On the other hand, if you have very dynamic workloads then Kubernetes can scale down your pods, but if you don’t scale down your nodes correspondingly you will still pay for the excess capacity. In the cloud you can stop and start instances on demand. Combining it with the cluster autoscaler can solve the compute capacity problem automatically. That’s the theory. In practice there are always nuances.

Choosing your node types

The simplest solution is to choose a single node type with a known quantity of CPU, memory...