Book Image

Mastering KVM Virtualization - Second Edition

By : Vedran Dakic, Humble Devassy Chirammal, Prasad Mukhedkar, Anil Vettathu
Book Image

Mastering KVM Virtualization - Second Edition

By: Vedran Dakic, Humble Devassy Chirammal, Prasad Mukhedkar, Anil Vettathu

Overview of this book

Kernel-based Virtual Machine (KVM) enables you to virtualize your data center by transforming your Linux operating system into a powerful hypervisor that allows you to manage multiple operating systems with minimal fuss. With this book, you'll gain insights into configuring, troubleshooting, and fixing bugs in KVM virtualization and related software. This second edition of Mastering KVM Virtualization is updated to cover the latest developments in the core KVM components - libvirt and QEMU. Starting with the basics of Linux virtualization, you'll explore VM lifecycle management and migration techniques. You’ll then learn how to use SPICE and VNC protocols while creating VMs and discover best practices for using snapshots. As you progress, you'll integrate third-party tools with Ansible for automation and orchestration. You’ll also learn to scale out and monitor your environments, and will cover oVirt, OpenStack, Eucalyptus, AWS, and ELK stack. Throughout the book, you’ll find out more about tools such as Cloud-Init and Cloudbase-Init. Finally, you'll be taken through the performance tuning and troubleshooting guidelines for KVM-based virtual machines and a hypervisor. By the end of this book, you'll be well-versed with KVM virtualization and the tools and technologies needed to build and manage diverse virtualization environments.
Table of Contents (22 chapters)
Section 1: KVM Virtualization Basics
Section 2: libvirt and ovirt for Virtual Machine Management
Section 3: Automation, Customization, and Orchestration for KVM VMs
Section 4: Scalability, Monitoring, Performance Tuning, and Troubleshooting

Virtualization as a concept

Virtualization is a computing approach that decouples hardware from software. It provides a better, more efficient, and programmatic approach to resource splitting and sharing between various workloads – virtual machines running OSes, and applications on top of them.

If we were to compare traditional, physical computing of the past with virtualization, we can say that by virtualizing, we get the possibility to run multiple guest OSes (multiple virtual servers) on the same piece of hardware (same physical server). If we're using a type 1 hypervisor (explained in Chapter 1, Understanding Linux Virtualization), this means that the hypervisor is going to be in charge of letting the virtual servers access physical hardware. This is because there is more than one virtual server using the same hardware as the other virtual servers on the same physical server. This is usually supported by some kind of scheduling algorithm that's implemented programmatically...