Book Image

Linux Device Drivers Development

By : John Madieu
Book Image

Linux Device Drivers Development

By: John Madieu

Overview of this book

Linux kernel is a complex, portable, modular and widely used piece of software, running on around 80% of servers and embedded systems in more than half of devices throughout the World. Device drivers play a critical role in how well a Linux system performs. As Linux has turned out to be one of the most popular operating systems used, the interest in developing proprietary device drivers is also increasing steadily. This book will initially help you understand the basics of drivers as well as prepare for the long journey through the Linux Kernel. This book then covers drivers development based on various Linux subsystems such as memory management, PWM, RTC, IIO, IRQ management, and so on. The book also offers a practical approach on direct memory access and network device drivers. By the end of this book, you will be comfortable with the concept of device driver development and will be in a position to write any device driver from scratch using the latest kernel version (v4.13 at the time of writing this book).
Table of Contents (23 chapters)
Free Chapter
1
Introduction to Kernel Development

The GPIO subsystem

From a hardware point of view, a GPIO is a functionality, a mode in which a pin can operate. From a software point of view, a GPIO is nothing but a digital line, which can operate as an input or output, and can have only two values: (1 for high or 0 for low). Kernel GPIO subsystems provide every function you can imagine to set up and handle GPIO line from within your driver:

  • Prior to using a GPIO from within the driver, you should claim it to the kernel. This is a way to take the ownership of the GPIO, preventing other drivers from accessing the same GPIO. After taking the ownership of the GPIO, you can:
    • Set the direction.
    • Toggle its output state (driving line high or low) if used as output.
    • Set the debounce-interval and read the state, if used as input. For GPIO lines mapped to IRQ, you can define at what edge/level the interrupt should be triggered...