Book Image

Mastering Kubernetes

By : Gigi Sayfan
Book Image

Mastering Kubernetes

By: Gigi Sayfan

Overview of this book

Kubernetes is an open source system to automate the deployment, scaling, and management of containerized applications. If you are running more than just a few containers or want automated management of your containers, you need Kubernetes. This book mainly focuses on the advanced management of Kubernetes clusters. It covers problems that arise when you start using container orchestration in production. We start by giving you an overview of the guiding principles in Kubernetes design and show you the best practises in the fields of security, high availability, and cluster federation. You will discover how to run complex stateful microservices on Kubernetes including advanced features as horizontal pod autoscaling, rolling updates, resource quotas, and persistent storage back ends. Using real-world use cases, we explain the options for network configuration and provides guidelines on how to set up, operate, and troubleshoot various Kubernetes networking plugins. Finally, we cover custom resource development and utilization in automation and maintenance workflows. By the end of this book, you’ll know everything you need to know to go from intermediate to advanced level.
Table of Contents (22 chapters)
Mastering Kubernetes
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
Index

Stateful versus stateless applications in Kubernetes


A stateless Kubernetes application is an application that doesn't manage its state in the Kubernetes cluster. All of the state is stored outside the cluster and the cluster containers access it in some manner. In this section, we'll understand why state management is critical to the design of a distributed system and the benefits of managing states within the Kubernetes cluster.

Understanding the nature of distributed data-intensive apps

Let's start from the basics here. Distributed applications are a collection of processes that run on multiple machines, process inputs, manipulate data, expose APIs, and possibly have other side effects. Each process is a combination of its program, its runtime environment, and its inputs and outputs. The programs you write at school get their input as command line arguments, maybe read a file or access a database, and then write their results to the screen or a file or a database. Some programs keep states...