Book Image

Practical Site Reliability Engineering

By : Pethuru Raj Chelliah, Shreyash Naithani, Shailender Singh
Book Image

Practical Site Reliability Engineering

By: Pethuru Raj Chelliah, Shreyash Naithani, Shailender Singh

Overview of this book

Site reliability engineering (SRE) is being touted as the most competent paradigm in establishing and ensuring next-generation high-quality software solutions. This book starts by introducing you to the SRE paradigm and covers the need for highly reliable IT platforms and infrastructures. As you make your way through the next set of chapters, you will learn to develop microservices using Spring Boot and make use of RESTful frameworks. You will also learn about GitHub for deployment, containerization, and Docker containers. Practical Site Reliability Engineering teaches you to set up and sustain containerized cloud environments, and also covers architectural and design patterns and reliability implementation techniques such as reactive programming, and languages such as Ballerina and Rust. In the concluding chapters, you will get well-versed with service mesh solutions such as Istio and Linkerd, and understand service resilience test practices, API gateways, and edge/fog computing. By the end of this book, you will have gained experience on working with SRE concepts and be able to deliver highly reliable apps and services.
Table of Contents (19 chapters)
Title Page
Dedication
About Packt
Contributors
Preface
10
Containers, Kubernetes, and Istio Monitoring
Index

Monitoring clouds, clusters, and containers


The cloud centers are being increasingly containerized and managed. That is, there are going to be well-entrenched containerized clouds soon. The formation and managing of containerized clouds gets simplified through a host of container orchestration and management tools. There are both open source and commercial-grade container-monitoring tools. Kubernetes is emerging as the leading container orchestration and management platform. Thus, by leveraging the aforementioned toolsets, the process of setting up and sustaining containerized clouds is accelerated, risk-free, and rewarding.

The tool-assisted monitoring of cloud resources (both coarse-grained as well as fine-grained) and applications in production environments is crucial to scaling the applications and providing resilient services. In a Kubernetes cluster, application performance can be examined at many different levels: containers, pods, services, and clusters. Through a single pane of glass...