Book Image

Getting Started with Kubernetes - Third Edition

By : Jonathan Baier, Jesse White
Book Image

Getting Started with Kubernetes - Third Edition

By: Jonathan Baier, Jesse White

Overview of this book

Kubernetes has continued to grow and achieve broad adoption across various industries, helping you to orchestrate and automate container deployments on a massive scale. Based on the recent release of Kubernetes 1.12, Getting Started with Kubernetes gives you a complete understanding of how to install a Kubernetes cluster. The book focuses on core Kubernetes constructs, such as pods, services, replica sets, replication controllers, and labels. You will understand cluster-level networking in Kubernetes, and learn to set up external access to applications running in the cluster. As you make your way through the book, you'll understand how to manage deployments and perform updates with minimal downtime. In addition to this, you will explore operational aspects of Kubernetes , such as monitoring and logging, later moving on to advanced concepts such as container security and cluster federation. You'll get to grips with integrating your build pipeline and deployments within a Kubernetes cluster, and be able to understand and interact with open source projects. In the concluding chapters, you'll orchestrate updates behind the scenes, avoid downtime on your cluster, and deal with underlying cloud provider instability within your cluster. By the end of this book, you'll have a complete understanding of the Kubernetes platform and will start deploying applications on it.
Table of Contents (23 chapters)
Title Page
Dedication
Packt Upsell
Contributors
Preface
Index

Persistent storage


So far, we only worked with workloads that we could start and stop at will, with no issue. However, real-world applications often carry state and record data that we prefer (even insist) not to lose. The transient nature of containers themselves can be a big challenge. If you recall our discussion of layered filesystems in Chapter 1, Introduction to Kubernetes, the top layer is writable. (It's also frosting, which is delicious.) However, when the container dies, the data goes with it. The same is true for crashed containers that Kubernetes restarts.

This is where volumes or disks come into play. Volumes exist outside the container and are coupled to the pod, which allows us to save our important data across containers outages. Further more, if we have a volume at the pod level, data can be shared between containers in the same application stack and within the same pod. A volume itself on Kubernetes is a directory, which the Pod provides to the containers running on it....