Book Image

Hands-On RTOS with Microcontrollers

By : Brian Amos
Book Image

Hands-On RTOS with Microcontrollers

By: Brian Amos

Overview of this book

A real-time operating system (RTOS) is used to develop systems that respond to events within strict timelines. Real-time embedded systems have applications in various industries, from automotive and aerospace through to laboratory test equipment and consumer electronics. These systems provide consistent and reliable timing and are designed to run without intervention for years. This microcontrollers book starts by introducing you to the concept of RTOS and compares some other alternative methods for achieving real-time performance. Once you've understood the fundamentals, such as tasks, queues, mutexes, and semaphores, you'll learn what to look for when selecting a microcontroller and development environment. By working through examples that use an STM32F7 Nucleo board, the STM32CubeIDE, and SEGGER debug tools, including SEGGER J-Link, Ozone, and SystemView, you'll gain an understanding of preemptive scheduling policies and task communication. The book will then help you develop highly efficient low-level drivers and analyze their real-time performance and CPU utilization. Finally, you'll cover tips for troubleshooting and be able to take your new-found skills to the next level. By the end of this book, you'll have built on your embedded system skills and will be able to create real-time systems using microcontrollers and FreeRTOS.
Table of Contents (24 chapters)
1
Section 1: Introduction and RTOS Concepts
5
Section 2: Toolchain Setup
9
Section 3: RTOS Application Examples
13
Section 4: Advanced RTOS Techniques

Deleting tasks

In some cases, it may be advantageous to have a task run and, eventually, after it has accomplished everything it needs to, remove it from the system. For example, in some systems with fairly involved startup routines, it might be advantageous to run some of the late initialization code inside a task. In this case, the initialization code would run, but there is no need for an infinite loop. If the task is kept around, it will still have its stack and TCB wasting FreeRTOS heap space. Deleting the task will free the task's stack and TCB, making the RAM available for reuse.

All of the critical initialization code should be run long before the scheduler starts.

The task deletes itself

The simplest way to delete...