Book Image

Modern Computer Architecture and Organization

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.
Table of Contents (20 chapters)
1
Section 1: Fundamentals of Computer Architecture
8
Section 2: Processor Architectures and Instruction Sets
14
Section 3: Applications of Computer Architecture

Virtualizing modern processors

The hardware architectures of most general-purpose processor families have matured to the point that they fully support the execution of virtualized guest operating systems, at least in their higher-end variants. The following sections briefly introduce the virtualization capabilities provided by modern general-purpose processor families.

x86 processor virtualization

The x86 architecture was not originally designed to support the execution of virtualized operating systems. As a result, x86 processors, from the earliest days through to the Pentium series, implemented instruction sets containing several unsafe but non-trapping instructions. These instructions caused problems with virtualization by, for example, allowing the guest operating system to access privileged registers that do not contain data corresponding to the state of the virtual machine.

x86 current privilege level and unsafe instructions

In the x86 architecture, the lower two...