Book Image

Modern Computer Architecture and Organization

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.
Table of Contents (20 chapters)
1
Section 1: Fundamentals of Computer Architecture
8
Section 2: Processor Architectures and Instruction Sets
14
Section 3: Applications of Computer Architecture

The boot process

The procedure for booting a system image varies, depending on the partition style of the mass storage device containing the image. Beginning in the early 1980s, the standard disk partition format was called the master boot record (MBR). An MBR partition has a boot sector located at the logical beginning of its storage space. The MBR boot sector contains information describing the device's logical partitions. Each partition contains a filesystem organized as a tree structure of directories and the files within them.

Due to the fixed format of MBR data structures, an MBR storage device can contain a maximum of four logical partitions and can be no larger than 2 TB in size, equal to 232 512-byte data sectors. These limits have become increasingly constraining as commercially available disk sizes grew beyond 2 TB. To resolve these issues, and in tandem with the development of UEFI, a new partition format called GUID partition table (GPT) (where GUID stands for...