Book Image

Python Network Programming

By : Abhishek Ratan, Eric Chou, Pradeeban Kathiravelu, Dr. M. O. Faruque Sarker
Book Image

Python Network Programming

By: Abhishek Ratan, Eric Chou, Pradeeban Kathiravelu, Dr. M. O. Faruque Sarker

Overview of this book

This Learning Path highlights major aspects of Python network programming such as writing simple networking clients, creating and deploying SDN and NFV systems, and extending your network with Mininet. You’ll also learn how to automate legacy and the latest network devices. As you progress through the chapters, you’ll use Python for DevOps and open source tools to test, secure, and analyze your network. Toward the end, you'll develop client-side applications, such as web API clients, email clients, SSH, and FTP, using socket programming. By the end of this Learning Path, you will have learned how to analyze a network's security vulnerabilities using advanced network packet capture and analysis techniques. This Learning Path includes content from the following Packt products: • Practical Network Automation by Abhishek Ratan • Mastering Python Networking by Eric Chou • Python Network Programming Cookbook, Second Edition by Pradeeban Kathiravelu, Dr. M. O. Faruque Sarker
Table of Contents (30 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Controller-based network fabric


As we come out of the legacy hardware era in which each physical path was connected and designed to take traffic from one point to another, and where a packet had limited availability to reach from one device to another, SDN is ensuring that we have a network fabric for our data to reach between different sources and destinations.

A network fabric is a collection of different network devices connected to each other by a common controller ensuring that each component in the network is optimized to send traffic among each of the nodes. The underlying switch fabric, which is a physical switchboard with ports (like Ethernet, ATM, and DSL), is also controlled and programmed by a controller which can ensure (by creating a path or specific port(s)) that a particular type of data can traverse through to reach its destinations.

In a typical network design we have Layer 2 (or switching domains) and Layer 3 (or routing domains). If we do not have a controller-based approach...