Book Image

Hands-On Network Programming with C

By : Lewis Van Winkle
Book Image

Hands-On Network Programming with C

By: Lewis Van Winkle

Overview of this book

Network programming enables processes to communicate with each other over a computer network, but it is a complex task that requires programming with multiple libraries and protocols. With its support for third-party libraries and structured documentation, C is an ideal language to write network programs. Complete with step-by-step explanations of essential concepts and practical examples, this C network programming book begins with the fundamentals of Internet Protocol, TCP, and UDP. You’ll explore client-server and peer-to-peer models for information sharing and connectivity with remote computers. The book will also cover HTTP and HTTPS for communicating between your browser and website, and delve into hostname resolution with DNS, which is crucial to the functioning of the modern web. As you advance, you’ll gain insights into asynchronous socket programming and streams, and explore debugging and error handling. Finally, you’ll study network monitoring and implement security best practices. By the end of this book, you’ll have experience of working with client-server applications and be able to implement new network programs in C. The code in this book is compatible with the older C99 version as well as the latest C18 and C++17 standards. You’ll work with robust, reliable, and secure code that is portable across operating systems, including Winsock sockets for Windows and POSIX sockets for Linux and macOS.
Table of Contents (26 chapters)
Title Page
Dedication
About Packt
Contributors
Preface
Index

Clients and servers


In the telephone analogy, a call must be initiated first by one party. The initiating party dials the number for the receiving party, and the receiving party answers.

This is also a common paradigm in networking called the client-server model.  In this model, a server listens for connections. The client, knowing the address and port number that the server is listening on, establishes the connection by sending the first packet.

For example, the web server at example.com listens on port 80 (HTTP) and port 443 (HTTPS). A web browser (client) must establish the connection by sending the first packet to the web server address and port.