Book Image

Azure for Architects. - Second Edition

By : Ritesh Modi
Book Image

Azure for Architects. - Second Edition

By: Ritesh Modi

Overview of this book

Over the years, Azure cloud services have grown quickly, and the number of organizations adopting Azure for their cloud services is also gradually increasing. Leading industry giants are finding that Azure fulfills their extensive cloud requirements. Azure for Architects – Second Edition starts with an extensive introduction to major designing and architectural aspects available with Azure. These design patterns focus on different aspects of the cloud, such as high availability, security, and scalability. Gradually, we move on to other aspects, such as ARM template modular design and deployments. This is the age of microservices and serverless is the preferred implementation mechanism for them. This book covers the entire serverless stack available in Azure including Azure Event Grid, Azure Functions, and Azure Logic Apps. New and advance features like durable functions are discussed at length. A complete integration solution using these serverless technologies is also part of the book. A complete chapter discusses all possible options related to containers in Azure including Azure Kubernetes services, Azure Container Instances and Registry, and Web App for Containers. Data management and integration is an integral part of this book that discusses options for implementing OLTP solutions using Azure SQL, Big Data solutions using Azure Data factory and Data Lake Storage, eventing solutions using stream analytics, and Event Hubs. This book will provide insights into Azure governance features such as tagging, RBAC, cost management, and policies. By the end of this book, you will be able to develop a full-?edged Azure cloud solution that is Enterprise class and future-ready.
Table of Contents (17 chapters)

Virtualization

Virtualization was a breakthrough innovation that completely changed the way physical servers were looked at. It refers to the abstraction of a physical object into a logical object.

The virtualization of physical servers led to virtual servers known as virtual machines. These virtual machines consume and share the same physical CPU, memory, storage, and other hardware with the physical server on which they are hosted. This enabled faster and easier provisioning of application environments on demand, providing high availability and scalability with reduced cost. One physical server was enough to host multiple virtual machines, each virtual machine containing its own operating system and hosting services on it.

There was no longer any need to buy additional physical servers for deploying new applications and services. The existing physical servers were sufficient to host more virtual machines. Furthermore, as part of rationalization, many physical servers were consolidated into a few with the help of virtualization.

Each virtual machine contains the entire operating system, and each virtual machine is completely isolated from other virtual machines, including the physical hosts. Although a virtual machine uses the hardware provided by the host physical server, it has full control over its assigned resources and its environment. These virtual machines can be hosted on a network such as a physical server with its own identity.

Azure can create Linux and Windows virtual machines in a few minutes. Microsoft provides its own images, along with images from partners and the community. Users can provide their own images. Virtual machines are created using these images.