Book Image

Linux Kernel Programming

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.
Table of Contents (19 chapters)
1
Section 1: The Basics
6
Writing Your First Kernel Module - LKMs Part 2
7
Section 2: Understanding and Working with the Kernel
10
Kernel Memory Allocation for Module Authors - Part 1
11
Kernel Memory Allocation for Module Authors - Part 2
14
Section 3: Delving Deeper
17
About Packt

Reader-writer spinlock interfaces

Having used spinlocks, using the reader-writer variant is straightforward; the lock data type is abstracted as the rwlock_t structure (in place of spinlock_t) and, in terms of API names, simply substitute read or write in place of spin:

#include <linux/rwlock.h>
rwlock_t mylist_lock;

The most basic APIs of the reader-writer spinlock are as follows:

void read_lock(rwlock_t *lock);
void write_lock(rwlock_t *lock);

As an example, the kernel's tty layer has code to handle a Secure Attention Key (SAK); the SAK is a security feature, a means to prevent a Trojan horse-type credentials hack by killing all processes associated with the TTY device. This will happen when the user presses the SAK (https://www.kernel.org/doc/html/latest/security/sak.html). When this actually happens (that is, when the user presses the SAK, mapped to the Alt-SysRq-k sequence by default), within its code path, it has to iterate over all tasks...