Book Image

Linux Kernel Programming

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.
Table of Contents (19 chapters)
1
Section 1: The Basics
6
Writing Your First Kernel Module - LKMs Part 2
7
Section 2: Understanding and Working with the Kernel
10
Kernel Memory Allocation for Module Authors - Part 1
11
Kernel Memory Allocation for Module Authors - Part 2
14
Section 3: Delving Deeper
17
About Packt

lockdep issues

A couple of issues can arise when working with lockdep:

  • Repeated module loading and unloading can cause lockdep's internal lock class limit to be exceeded (the reason, as explained within the kernel documentation, is that loading a x.ko kernel module creates a new set of lock classes for all its locks, while unloading x.ko does not remove them; it's actually reused). In effect, either don't repeatedly load/unload modules or reset the system.
  • Especially in those cases where a data structure has an enormous number of locks (such as an array of structures), failing to properly initialize every single lock can result in lockdep lock-class overflow.

The debug_locks integer is set to 0 whenever lock debugging is disabled (even on a debug kernel); this can result in this message showing up: *WARNING* lock debugging disabled!! - possibly due to a lockdep warning. This could even happen due to lockdep issuing...