Book Image

Linux Kernel Programming

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming is a comprehensive introduction for those new to Linux kernel and module development. This easy-to-follow guide will have you up and running with writing kernel code in next-to-no time. This book uses the latest 5.4 Long-Term Support (LTS) Linux kernel, which will be maintained from November 2019 through to December 2025. By working with the 5.4 LTS kernel throughout the book, you can be confident that your knowledge will continue to be valid for years to come. You’ll start the journey by learning how to build the kernel from the source. Next, you’ll write your first kernel module using the powerful Loadable Kernel Module (LKM) framework. The following chapters will cover key kernel internals topics including Linux kernel architecture, memory management, and CPU scheduling. During the course of this book, you’ll delve into the fairly complex topic of concurrency within the kernel, understand the issues it can cause, and learn how they can be addressed with various locking technologies (mutexes, spinlocks, atomic, and refcount operators). You’ll also benefit from more advanced material on cache effects, a primer on lock-free techniques within the kernel, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this kernel book, you’ll have a detailed understanding of the fundamentals of writing Linux kernel module code for real-world projects and products.
Table of Contents (19 chapters)
1
Section 1: The Basics
6
Writing Your First Kernel Module - LKMs Part 2
7
Section 2: Understanding and Working with the Kernel
10
Kernel Memory Allocation for Module Authors - Part 1
11
Kernel Memory Allocation for Module Authors - Part 2
14
Section 3: Delving Deeper
17
About Packt

Static analysis tools for the Linux kernel

Static analyzers are tools that, by examining the source code, attempt to identify potential errors within it. They can be tremendously useful to you as the developer, though you must learn how to "tame" them – in the sense that they can result in false positives.

Several useful static analysis tools exist. Among them, the ones that are more relevant for Linux kernel code analysis include the following:

For example, to install and try Sparse, do the following:

sudo apt install sparse
cd <kernel-src-tree>
make C=1 CHECK="/usr/bin/sparse"

There are also several high-quality commercial static analysis tools available. Among them are the following:

clang is a frontend to GCC that is becoming more popular even for kernel builds. You can install it on Ubuntu with sudo apt install clang clang-tools.

Static analysis tools can save the day. Time spent learning to use them effectively is time well spent!