Book Image

Implementing and Administering Cisco Solutions: 200-301 CCNA Exam Guide

By : Glen D. Singh
Book Image

Implementing and Administering Cisco Solutions: 200-301 CCNA Exam Guide

By: Glen D. Singh

Overview of this book

In the dynamic technology landscape, staying on top of the latest technology trends is a must, especially if you want to build a career in network administration. Achieving CCNA 200-301 certification will validate your knowledge of networking concepts, and this book will help you to do just that. This exam guide focuses on the fundamentals to help you gain a high-level understanding of networking, security, IP connectivity, IP services, programmability, and automation. Starting with the functions of various networking components, you’ll discover how they are used to build and improve an enterprise network. You’ll then delve into configuring networking devices using a command-line interface (CLI) to provide network access, services, security, connectivity, and management. The book covers important aspects of network engineering using a variety of hands-on labs and real-world scenarios that will help you gain essential practical skills. As you make progress, this CCNA certification study guide will help you get to grips with the solutions and technologies that you need to implement and administer a broad range of modern networks and IT infrastructures. By the end of this book, you’ll have gained the confidence to pass the Cisco CCNA 200-301 exam on the first attempt and be well-versed in a variety of network administration and security engineering solutions.
Table of Contents (26 chapters)
1
Section 1: Network Fundamentals
6
Section 2: Network Access
9
Section 3: IP Connectivity
12
Section 4: IP Services
15
Section 5: Security Fundamentals
20
Section 6: Automation and Programmability
22
Chapter 16: Mock Exam 1
23
Chapter 17: Mock Exam 2

Understanding the evolution of networking and the internet

In the pre-internet age, scientists, institutions, and other experts were working to create a network that could allow them to connect computers on a worldwide scale. Computer scientists began working on a model; the initial prototype was known as the Advanced Research Projects Agency Network (ARPANET).

ARPANET was developed in the 1960s. It was funded by the US Department of Defense (DoD) with the idea it would be used to connect universities and research centers. The network technology used on this prototype was packet switching. This allowed connected computers to send and receive data on a single network. However, ARPANET was not resilient enough to allow multiple channels of communication on the network.

The US Defense Advanced Research Projects Agency (DARPA) developed the Transmission Control Protocol/Internet Protocol (TCP/IP) suite, which was adopted by ARPANET in the early 1980s. The US DOD called it the official standard computer networking. With the adoption of TCP/IP, ARPANET began to evolve into much larger networks, allowing other organizations to be interconnected, and became what we commonly refer to as the internet today.

The internet is a worldwide collection of many interconnected networks, such as Wide Area Networks (WANs) and Local Area Networks (LANs). Each organization or person who connects a device to the internet simply extends the network (internet), so the internet is continuously growing as more devices are going online. Later in this chapter, we will take a deeper dive and discuss various types and sizes of network topologies.

The internet itself is not owned by any one person or organization in the world. However, there are many groups and organizations that help maintain the stability and set standards for intercommunicating on the internet and private networks.

As an upcoming network engineer, it's good to know a little about the following organizations and groups:

  • Internet Engineering Task Force (IETF). Its mission is simply to make the internet work better for all. You can find more information about IETF on their website at www.ietf.org.
  • Internet Assigned Numbers Authority (IANA) is responsible for the assignment, coordination, and management of internet protocol (IP) addressing, internet protocol resources, and the Domain Name System (DNS) Root Zone. You can find more information about IANA on their official website at www.iana.org.
  • Internet Corporation for Assigned Names and Numbers (ICANN) contributes to the internet's sustainability by coordinating and managing the internet's numerical spaces and namespaces to ensure its stability. You can find more information about ICANN on their official website at www.icann.org.

Now that we have covered the history of the internet, we'll look at how various network sizes differ in the next section.