Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By : Kaiwan N. Billimoria
Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By: Kaiwan N. Billimoria

Overview of this book

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization is an ideal companion guide to the Linux Kernel Programming book. This book provides a comprehensive introduction for those new to Linux device driver development and will have you up and running with writing misc class character device driver code (on the 5.4 LTS Linux kernel) in next to no time. You'll begin by learning how to write a simple and complete misc class character driver before interfacing your driver with user-mode processes via procfs, sysfs, debugfs, netlink sockets, and ioctl. You'll then find out how to work with hardware I/O memory. The book covers working with hardware interrupts in depth and helps you understand interrupt request (IRQ) allocation, threaded IRQ handlers, tasklets, and softirqs. You'll also explore the practical usage of useful kernel mechanisms, setting up delays, timers, kernel threads, and workqueues. Finally, you'll discover how to deal with the complexity of kernel synchronization with locking technologies (mutexes, spinlocks, and atomic/refcount operators), including more advanced topics such as cache effects, a primer on lock-free techniques, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this Linux kernel book, you'll have learned the fundamentals of writing Linux character device driver code for real-world projects and products.
Table of Contents (11 chapters)
1
Section 1: Character Device Driver Basics
3
User-Kernel Communication Pathways
5
Handling Hardware Interrupts
6
Working with Kernel Timers, Threads, and Workqueues
7
Section 2: Delving Deeper

Writing the misc driver code – part 1

Without further ado, let's look at the code to write a simple skeleton character misc device driver! (Well, snippets of the actual code; as always, I strongly advise you to git clone the book's GitHub repository, view it in detail, and try out the code yourself.)

Let's go through it step by step: in the init code of our first device driver (using the LKM framework), we must first register our driver with the appropriate Linux kernel's framework; in this case, with the misc framework. This is done via the misc_register() API. It takes one parameter, a pointer to a data structure of type miscdevice, which describes the miscellaneous device we are setting up:

// ch1/miscdrv/miscdrv.c
#define pr_fmt(fmt) "%s:%s(): " fmt, KBUILD_MODNAME, __func__
[...]
#include <linux/miscdevice.h>
#include <linux/fs.h> /* the fops, file data structures */
[...]

static struct miscdevice llkd_miscdev = {
.minor = MISC_DYNAMIC_MINOR, /* kernel dynamically assigns a free minor# */
.name = "llkd_miscdrv", /* when misc_register() is invoked, the kernel
* will auto-create a device file as /dev/llkd_miscdrv ;
* also populated within /sys/class/misc/ and /sys/devices/virtual/misc/ */
.mode = 0666, /* ... dev node perms set as specified here */
.fops = &llkd_misc_fops, /* connect to this driver's 'functionality' */
};

static int __init miscdrv_init(void)
{
int ret;
struct device *dev;

ret = misc_register(&llkd_miscdev);
if (ret != 0) {
pr_notice("misc device registration failed, aborting\n");
return ret;
}
[ ... ]

In the miscdevice structure instance, we do the following:

  1. We set the minor field to MISC_DYNAMIC_MINOR. This has the effect of requesting the kernel to dynamically assign us an available minor number (once registration is successful, this minor field gets populated with the actual minor number assigned).
  2. We initialize the name field. On successful registration, this has the kernel framework automatically create a device node (of the form /dev/<name>) on our behalf! As expected, the type will be character, the major number will be 10, and the minor number will be a dynamically assigned value. This is (part of) the advantage of using a kernel framework;  else, we might have had to devise a way to create the device node ourselves; by the way, the mknod(1) utility can create a device file when invoked with root privilege (or you have the CAP_MKNOD capability); it works by invoking the mknod(2) system call!
  3. The permissions of the device node will be set to whatever you initialize the mode field to (here, we've deliberately kept it permissive and readable-writeable by all via the 0666 octal value).
  4. We shall postpone the discussion of the file operations (fopsstructure member to the section following this one.

All misc drivers are of the character type and use the same major number (10), but of course require unique minor numbers.