Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You’ll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take.
Table of Contents (21 chapters)
18
Other Books You May Enjoy
19
Index

32-bit ARM architecture and instruction set

The ARM architectures define a family of RISC processors suitable for use in a wide variety of applications. Processors based on ARM architectures are preferred in designs where a combination of high performance, low power consumption, and small physical size is needed.

ARM Holdings, a British semiconductor and software company, developed the ARM architectures and licenses them to other companies who implement processors in silicon. Many applications of the ARM architectures are system-on-chip (SoC) designs combining a processor with specialized hardware to support functions such as cellular radio communications in smartphones.

ARM processors are employed in a broad spectrum of applications, from tiny battery-powered devices to supercomputers. ARM processors serve as embedded processors in safety-critical systems such as automotive anti-lock brakes and as general-purpose processors in smartwatches, portable phones, tablets, laptop...