Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You’ll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take.
Table of Contents (21 chapters)
18
Other Books You May Enjoy
19
Index

Smartphone architecture

At the architectural level, there are three key features a smartphone must provide to gain wide acceptance: small size (except for the display), long battery life, and very high processing performance upon demand. Obviously, the requirements for long battery life and high processing power are in conflict and must be balanced to achieve an optimal design.

The requirement for small size is generally approached by starting with a screen size (in terms of height and width) large enough to render high-quality video and function as a user-input device (especially as a keyboard), yet small enough to be easily carried in a pocket or purse. To keep the overall device size small in terms of total volume, it must be as thin as possible.

In the quest for thinness, the mechanical design must provide sufficient structural strength to support the screen and resist damage from routine handling, drops on the floor, and other physical assaults, while simultaneously providing...