Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You’ll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take.
Table of Contents (21 chapters)
18
Other Books You May Enjoy
19
Index

Digital Logic

This chapter builds upon the introductory topics presented in Chapter 1, Introducing Computer Architecture, and provides a firm understanding of the digital building blocks used in the design of modern processors and other sophisticated electronic circuits. We begin with a discussion of basic electrical circuit elements. Next, we introduce transistors and examine their use as switching components in simple logic gates. We then construct latches, flip-flops, and ring counters from logic gates. More complex processor components, including registers and adders, are developed by combining the devices introduced earlier. The concept of sequential logic, which means logic that contains state information that varies over time, is developed. The chapter ends with an introduction to hardware description languages, which represent the design method of choice for complex digital devices.

The following topics will be covered in this chapter:

  • Electrical circuits
  • ...