Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You’ll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take.
Table of Contents (21 chapters)
18
Other Books You May Enjoy
19
Index

Sequential logic

Digital circuitry that generates outputs based on a combination of current inputs and past inputs is called sequential logic. This contrasts with combinational logic, in which outputs depend only on the current state of the inputs.

When a sequential logic circuit composed of several components operates those components under the control of a shared clock signal, the circuit implements synchronous logic.

The steps involved in the execution of processor instructions take place as a series of discrete operations that consume input in the form of instruction opcodes and data values received from various sources. This activity takes place under the coordination of a master clock signal. The processor maintains internal state information from one clock step to the next, and from one instruction to the next.

Modern complex digital devices, including processors, are almost always implemented as synchronous sequential logic devices. Low-level internal components...