Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You’ll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take.
Table of Contents (21 chapters)
18
Other Books You May Enjoy
19
Index

Introducing the MOSFET

Chapter 2, Digital Logic, described the NPN transistor, a type of bipolar junction transistor (BJT). The NPN transistor is called bipolar because it relies on both positive (P) and negative (N) charge carriers to function.

In semiconductors, electrons serve as the negative charge carriers. There are no physical particles with a positive charge involved in a semiconductor operation. Instead, the absence of a normally present electron in an atom exhibits the same properties as a positively charged particle. These missing electrons are referred to as holes. Holes function as the positive charge carriers in bipolar junction transistors.

The concept of holes is so fundamental to semiconductor operation that William Shockley, one of the inventors of the transistor, wrote a book entitled Electrons and Holes in Semiconductors, published in 1950. We’ll next examine the behavior of positive and negative charge carriers in unipolar transistors.

As an...