Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You’ll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take.
Table of Contents (21 chapters)
18
Other Books You May Enjoy
19
Index

Exercises

Using a programming language that allows access to the byte representation of floating-point data types (such as C or C++), write a function that accepts a 32-bit single-precision value as input. Extract the sign, exponent, and mantissa from the bytes of the floating-point value and display them. Remove the bias term from the exponent before displaying its value and display the mantissa as a decimal number. Test the program with the values 0, -0, 1, -1, 6.674e-11, 1.0e38, 1.0e39, 1.0e-38, and 1.0e-39. The numeric values listed here containing e are using the C/C++ text representation of floating-point numbers. For example, 6.674e-11 means 6.674 x 10-11.

  1. Modify the program from Exercise 1 to also accept a double-precision floating-point value, and print the sign, exponent (with the bias removed), and mantissa from the value. Test it with the same input values as in Exercise 1, and with the values 1.0e308, 1.0e309, 1.0e-308, and 1.0e-309.
  2. Search the internet...