Book Image

Getting Started with Containerization

By : Dr. Gabriel N. Schenker, Hideto Saito, Hui-Chuan Chloe Lee, Ke-Jou Carol Hsu
Book Image

Getting Started with Containerization

By: Dr. Gabriel N. Schenker, Hideto Saito, Hui-Chuan Chloe Lee, Ke-Jou Carol Hsu

Overview of this book

Kubernetes is an open source orchestration platform for managing containers in a cluster environment. This Learning Path introduces you to the world of containerization, in addition to providing you with an overview of Docker fundamentals. As you progress, you will be able to understand how Kubernetes works with containers. Starting with creating Kubernetes clusters and running applications with proper authentication and authorization, you'll learn how to create high-availability Kubernetes clusters on Amazon Web Services (AWS), and also learn how to use kubeconfig to manage different clusters. Whether it is learning about Docker containers and Docker Compose, or building a continuous delivery pipeline for your application, this Learning Path will equip you with all the right tools and techniques to get started with containerization. By the end of this Learning Path, you will have gained hands-on experience of working with Docker containers and orchestrators, including SwarmKit and Kubernetes. This Learning Path includes content from the following Packt products: • Kubernetes Cookbook - Second Edition by Hideto Saito, Hui-Chuan Chloe Lee, and Ke-Jou Carol Hsu • Learn Docker - Fundamentals of Docker 18.x by Gabriel N. Schenker
Table of Contents (25 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Architecture


The architecture of a Docker Swarm from a 30,000-foot view consists of two main parts—a raft consensus group of an odd number of manager nodes, and a group of worker nodes that communicate with each other over a gossip network, also called the control plane. The following figure illustrates this architecture:

High-level architecture of a Docker Swarm

The manager nodes manage the swarm whilst the worker nodes execute the applications deployed into the swarm. Each manager has a complete copy of the full state of the swarm in its local raft store. Managers communicate with each other in a synchronous way and the raft stores are always in sync.

The workers, on the other hand, communicate with each other asynchronously for scalability reasons. There can be hundreds if not thousands of worker nodes in a swarm. Now that we have a high-level overview of what a Docker Swarm is, let's describe all the individual elements of a Docker Swarm in more detail.