Book Image

Modern Computer Architecture and Organization

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.
Table of Contents (20 chapters)
1
Section 1: Fundamentals of Computer Architecture
8
Section 2: Processor Architectures and Instruction Sets
14
Section 3: Applications of Computer Architecture

Latches

Combinational logic does not directly permit the storage of data as is needed for digital functions such as processor registers. Logic gates can be used to create data storage elements through the use of feedback from a gate output to an input.

The latch is a single-bit memory device constructed from logic gates. Figure 2.10 shows a simple type of latch called the Set-Reset, or SR, latch. The feature that provides memory in this circuit is the feedback from the output of the AND gate to the input of the OR gate:

Figure 2.10: SR latch circuit

Figure 2.10: SR latch circuit

Based on the inputs S and R, the circuit can either set the output Q to high, reset Q to low, or cause the output Q to be held at its last value. In the hold state, both S and R are low, and the state of the output Q is retained. Pulsing S high (going from low to high then back to low) causes the output Q to go high and remain at that level. Pulsing R high causes Q to go low and stay low. If both S and...