Book Image

Modern Computer Architecture and Organization

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.
Table of Contents (20 chapters)
1
Section 1: Fundamentals of Computer Architecture
8
Section 2: Processor Architectures and Instruction Sets
14
Section 3: Applications of Computer Architecture

Multiprocessing

A multiprocessing computer contains two or more processors that simultaneously execute sequences of instructions. The processors in such a system typically share access to system resources, such as main memory and peripheral devices. The processors in a multiprocessing system may be of the same architecture, or individual processors may be of differing architectures to support unique system requirements. Systems in which all processors are treated as equal are referred to as symmetric multiprocessing systems. Devices that contain multiple processors within a single integrated circuit are called multi-core processors.

At the level of the operating system scheduler, a symmetric multiprocessing environment simply provides more processors for use in thread scheduling. In such systems, the scheduler treats additional processors as resources when assigning threads for execution.

In a well-designed symmetric multiprocessing system, throughput can approach the ideal...