Book Image

Modern Computer Architecture and Organization

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.
Table of Contents (20 chapters)
1
Section 1: Fundamentals of Computer Architecture
8
Section 2: Processor Architectures and Instruction Sets
14
Section 3: Applications of Computer Architecture

Real-time computing

The previous chapter provided a brief introduction to some of the requirements of real-time-computing in terms of a system's responsiveness to changes in its inputs. These requirements are specified in the form of timing deadlines that limit how long the system can take to produce an output in response to a change in its input. This section will look at these timing specifications in more detail and will present the specific features real-time computing systems implement to ensure timing requirements are met.

Real-time computing systems can be categorized as providing soft or hard guarantees of responsiveness. A soft real-time system is considered to perform acceptably if it meets its desired response time most, but not necessarily all, of the time. An example of a soft real-time application is the clock display on a cell phone. When opening the clock display, some implementations momentarily present the time that was shown the last time the clock display...