Book Image

Modern Computer Architecture and Organization

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.
Table of Contents (20 chapters)
1
Section 1: Fundamentals of Computer Architecture
8
Section 2: Processor Architectures and Instruction Sets
14
Section 3: Applications of Computer Architecture

Physical and virtual memory

Memory devices in computers can be categorized as random-access memory (RAM), which can be read from and written to at will, and read-only memory (ROM), which, as the name indicates, can be read but not written. Some types of memory devices, such as flash memory and electrically erasable programmable read-only memory (EEPROM), inhabit a middle ground, where the data content of the devices can be changed, just not as easily, or as quickly, or updated such a large number of times, as standard RAM.

Memory devices within a computer must be configured to ensure that each device occupies a unique span of the system address space, enabling the processor to access each of possibly several RAM and ROM devices by setting its address lines appropriately. Modern computer systems generally perform this address space allocation automatically, based on the slot a memory device occupies.

Software running on early computer systems, and on the less-sophisticated computers...