Book Image

Mastering Kubernetes - Third Edition

By : Gigi Sayfan
Book Image

Mastering Kubernetes - Third Edition

By: Gigi Sayfan

Overview of this book

The third edition of Mastering Kubernetes is updated with the latest tools and code enabling you to learn Kubernetes 1.18’s latest features. This book primarily concentrates on diving deeply into complex concepts and Kubernetes best practices to help you master the skills of designing and deploying large clusters on various cloud platforms. The book trains you to run complex stateful microservices on Kubernetes including advanced features such as horizontal pod autoscaling, rolling updates, resource quotas, and persistent storage backend. With the two new chapters, you will gain expertise in serverless computing and utilizing service meshes. As you proceed through the chapters, you will explore different options for network configuration and learn to set up, operate, and troubleshoot Kubernetes networking plugins through real-world use cases. Furthermore, you will understand the mechanisms of custom resource development and its utilization in automation and maintenance workflows. By the end of this Kubernetes book, you will graduate from an intermediate to advanced Kubernetes professional.
Table of Contents (19 chapters)
17
Other Books You May Enjoy
18
Index

Persistent volumes walkthrough

In this section, we will understand the Kubernetes storage conceptual model and see how to map persistent storage into containers so they can read and write. Let's start by understanding the problem of storage. Containers and pods are ephemeral.

Anything a container writes to its own filesystem gets wiped out when the container dies. Containers can also mount directories from their host node and read or write to them. These will survive container restarts, but the nodes themselves are not immortal. Also, if the pod itself is rescheduled to a different node, the container will not have access to the old node host's filesystem.

There are other problems, such as ownership for mounted hosted directories when the container dies. Just imagine a bunch of containers writing important data to various data directories on their host and then going away, leaving all that data all over the nodes with no direct way to tell what container wrote...