Book Image

Python Machine Learning (Wiley)

By : Wei-Meng Lee
Book Image

Python Machine Learning (Wiley)

By: Wei-Meng Lee

Overview of this book

With computing power increasing exponentially and costs decreasing at the same time, this is the best time to learn machine learning using Python. Machine learning tasks that once required enormous processing power are now possible on desktop machines. Python Machine Learning begins by covering some fundamental libraries used in Python that make machine learning possible. You'll learn how to manipulate arrays of numbers with NumPy and use pandas to deal with tabular data. Once you have a firm foundation in the basics, you'll explore machine learning using Python and the scikit-learn libraries. You'll learn how to visualize data by plotting different types of charts and graphs using the matplotlib library. You'll gain a solid understanding of how the various machine learning algorithms work behind the scenes. The later chapters explore the common machine learning algorithms, such as regression, clustering, and classification, and discuss how to deploy the models that you have built, so that they can be used by client applications running on mobile and desktop devices. By the end of the book, you'll have all the knowledge you need to begin machine learning using Python.
Table of Contents (16 chapters)
Free Chapter
1
Cover
2
Introduction
11
CHAPTER 9: Supervised Learning—Classification Using K‐Nearest Neighbors (KNN)
15
Index
16
End User License Agreement

What Is Machine Learning?

If you have ever written a program, you will be familiar with the diagram shown in Figure 1.1. You write a program, feed some data into it, and get your output. For example, you might write a program to perform some accounting tasks for your business. In this case, the data collected would include your sales records, your inventory lists, and so on. The program would then take in the data and calculate your profits or loss based on your sales records. You may also perhaps churn out some nice and fanciful charts showing your sales performance. In this case, the output is the profit/loss statement, as well as other charts.

Diagram of a traditional programming, in which the data and the program produce the output.

Figure 1.1: In traditional programming, the data and the program produce the output

For many years, traditional desktop and web programming have dominated the landscape, and many algorithms and methodologies have evolved to make programs run more efficiently. In more recent years, however, machine learning has taken over the programming world...