Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Machine Learning (Wiley)
  • Table Of Contents Toc
  • Feedback & Rating feedback
Python Machine Learning (Wiley)

Python Machine Learning (Wiley)

By : Wei-Meng Lee
close
close
Python Machine Learning (Wiley)

Python Machine Learning (Wiley)

By: Wei-Meng Lee

Overview of this book

With computing power increasing exponentially and costs decreasing at the same time, this is the best time to learn machine learning using Python. Machine learning tasks that once required enormous processing power are now possible on desktop machines. Python Machine Learning begins by covering some fundamental libraries used in Python that make machine learning possible. You'll learn how to manipulate arrays of numbers with NumPy and use pandas to deal with tabular data. Once you have a firm foundation in the basics, you'll explore machine learning using Python and the scikit-learn libraries. You'll learn how to visualize data by plotting different types of charts and graphs using the matplotlib library. You'll gain a solid understanding of how the various machine learning algorithms work behind the scenes. The later chapters explore the common machine learning algorithms, such as regression, clustering, and classification, and discuss how to deploy the models that you have built, so that they can be used by client applications running on mobile and desktop devices. By the end of the book, you'll have all the knowledge you need to begin machine learning using Python.
Table of Contents (16 chapters)
close
close
Lock Free Chapter
1
Cover
2
Introduction
11
CHAPTER 9: Supervised Learning—Classification Using K‐Nearest Neighbors (KNN)
15
Index
16
End User License Agreement

What Is Logistic Regression?

In the previous chapter, you learned about linear regression and how you can use it to predict future values. In this chapter, you will learn another supervised machine learning algorithm—logistic regression. Unlike linear regression, logistic regression does not try to predict the value of a numeric variable given a set of inputs. Instead, the output of logistic regression is the probability of a given input point belonging to a specific class. The output of logistic regression always lies in [0,1].

To understand the use of logistic regression, consider the example shown in Figure 7.1. Suppose that you have a dataset containing information about voter income and voting preferences. For this dataset, you can see that low‐income voters tend to vote for candidate B, while high‐income voters tend to favor candidate A.

Illustration depicting the use of logistic regression of a dataset containing information about voter income and voting preferences.

Figure 7.1: Some problems have binary outcomes

With this dataset, you would be very interested in trying to predict which...

Visually different images
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Python Machine Learning (Wiley)
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon