Book Image

Machine Learning with R

By : Brett Lantz
Book Image

Machine Learning with R

By: Brett Lantz

Overview of this book

Machine learning, at its core, is concerned with transforming data into actionable knowledge. This fact makes machine learning well-suited to the present-day era of "big data" and "data science". Given the growing prominence of R—a cross-platform, zero-cost statistical programming environment—there has never been a better time to start applying machine learning. Whether you are new to data science or a veteran, machine learning with R offers a powerful set of methods for quickly and easily gaining insight from your data. "Machine Learning with R" is a practical tutorial that uses hands-on examples to step through real-world application of machine learning. Without shying away from the technical details, we will explore Machine Learning with R using clear and practical examples. Well-suited to machine learning beginners or those with experience. Explore R to find the answer to all of your questions. How can we use machine learning to transform data into action? Using practical examples, we will explore how to prepare data for analysis, choose a machine learning method, and measure the success of the process. We will learn how to apply machine learning methods to a variety of common tasks including classification, prediction, forecasting, market basket analysis, and clustering. By applying the most effective machine learning methods to real-world problems, you will gain hands-on experience that will transform the way you think about data. "Machine Learning with R" will provide you with the analytical tools you need to quickly gain insight from complex data.
Table of Contents (19 chapters)
Machine Learning with R
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
9
Finding Groups of Data – Clustering with k-means
Index

Factors


If you recall from Chapter 1, Introducing Machine Learning, features that represent a characteristic with categories of values are known as nominal. Although it is possible to use a character vector to store nominal data, R provides a data structure known as a factor specifically for this purpose. A factor is a special case of vector that is solely used for representing nominal variables. In the medical dataset we are building, we might use a factor to represent gender, because it uses two categories: MALE and FEMALE.

Why not use character vectors? An advantage of using factors is that they are generally more efficient than character vectors because the category labels are stored only once. Rather than storing MALE, MALE, FEMALE, the computer may store 1, 1, 2. This can save memory. Additionally, certain machine learning algorithms use special routines to handle categorical variables. Coding categorical variables as factors ensures that the model will treat this data appropriately...