Book Image

Machine Learning with R

By : Brett Lantz
Book Image

Machine Learning with R

By: Brett Lantz

Overview of this book

Machine learning, at its core, is concerned with transforming data into actionable knowledge. This fact makes machine learning well-suited to the present-day era of "big data" and "data science". Given the growing prominence of R—a cross-platform, zero-cost statistical programming environment—there has never been a better time to start applying machine learning. Whether you are new to data science or a veteran, machine learning with R offers a powerful set of methods for quickly and easily gaining insight from your data. "Machine Learning with R" is a practical tutorial that uses hands-on examples to step through real-world application of machine learning. Without shying away from the technical details, we will explore Machine Learning with R using clear and practical examples. Well-suited to machine learning beginners or those with experience. Explore R to find the answer to all of your questions. How can we use machine learning to transform data into action? Using practical examples, we will explore how to prepare data for analysis, choose a machine learning method, and measure the success of the process. We will learn how to apply machine learning methods to a variety of common tasks including classification, prediction, forecasting, market basket analysis, and clustering. By applying the most effective machine learning methods to real-world problems, you will gain hands-on experience that will transform the way you think about data. "Machine Learning with R" will provide you with the analytical tools you need to quickly gain insight from complex data.
Table of Contents (19 chapters)
Machine Learning with R
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
9
Finding Groups of Data – Clustering with k-means
Index

Example – filtering mobile phone spam with the naive Bayes algorithm


As worldwide use of mobile phones has grown, a new avenue for electronic junk mail has been opened for disreputable marketers. These advertisers utilize Short Message Service (SMS) text messages to target potential consumers with unwanted advertising known as SMS spam. This type of spam is particularly troublesome because, unlike email spam, many cellular phone users pay a fee per SMS received. Developing a classification algorithm that could filter SMS spam would provide a useful tool for cellular phone providers.

Since naive Bayes has been used successfully for email spam filtering, it seems likely that it could also be applied to SMS spam. However, relative to email spam, SMS spam poses additional challenges for automated filters. SMS messages are often limited to 160 characters, reducing the amount of text that can be used to identify whether a message is junk. The limit, combined with small mobile phone keyboards, has...