Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying NumPy Beginner's Guide
  • Table Of Contents Toc
NumPy Beginner's Guide

NumPy Beginner's Guide - Second Edition

By : Ivan Idris
4.2 (14)
close
close
NumPy Beginner's Guide

NumPy Beginner's Guide

4.2 (14)
By: Ivan Idris

Overview of this book

NumPy is an extension to, and the fundamental package for scientific computing with Python. In today's world of science and technology, it is all about speed and flexibility. When it comes to scientific computing, NumPy is on the top of the list. NumPy Beginner's Guide will teach you about NumPy, a leading scientific computing library. NumPy replaces a lot of the functionality of Matlab and Mathematica, but in contrast to those products, is free and open source. Write readable, efficient, and fast code, which is as close to the language of mathematics as is currently possible with the cutting edge open source NumPy software library. Learn all the ins and outs of NumPy that requires you to know basic Python only. Save thousands of dollars on expensive software, while keeping all the flexibility and power of your favourite programming language.You will learn about installing and using NumPy and related concepts. At the end of the book we will explore some related scientific computing projects. This book will give you a solid foundation in NumPy arrays and universal functions. Through examples, you will also learn about plotting with Matplotlib and the related SciPy project. NumPy Beginner's Guide will help you be productive with NumPy and have you writing clean and fast code in no time at all.
Table of Contents (19 chapters)
close
close
Numpy Beginner's Guide Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
2
Index

Chapter 2. Beginning with NumPy Fundamentals

After installing NumPy and getting some code to work, it's time to cover NumPy basics.

The topics we shall cover in this chapter are:

  • Data types

  • Array types

  • Type conversions

  • Array creation

  • Indexing

  • Slicing

  • Shape manipulation

Before we start, let me make a few remarks about the code examples in this chapter. The code snippets in this chapter show input and output from several IPython sessions. Recall that IPython was introduced in Chapter 1, NumPy Quick Start, as the interactive Python shell of choice for scientific computing. The advantages of IPython are the PyLab switch that imports many scientific computing Python packages, including NumPy, and the fact that it is not necessary to explicitly call the print function to display variable values. However, the source code delivered alongside the book is regular Python code that uses imports and print statements.

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
NumPy Beginner's Guide
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon